Convert Integers to
Byte Arrays

Technology Toolbox

1 VB.NET

o C#

(1 SQL Server 2000
1 ASP.NET

a XML

J VB6

Go Online!

Use these Locator+ codes at
www.visualstudiomagazine.com
to go directly to these resources.

Download

VS0303QA Download the code for
this article. It includes the WndProc
solution, with two WinForms
applications—MessageTracer and
MessageSender—as well as the
Util class in the WinFormsEx class
library.

Discuss

VS0303QA_D Discuss this article in
the C# forum.

Read More

VS0303QA_T Read this article
online.

VS0211FF_T “Deploy Your .NET
App” by Fabio Claudio Ferracchiati

VSEP0112CS_T “Dig Into C#" by Bill
Wagner

VSEP0112JP_T “Discussion with
Jeff Prosise” by Bill Wagner

42

e Convert Integers to
Byte Arrays
How can I convertan int toa byte array, and vice
versa, in C#?

A:

You can accomplish this in at least three ways
(see Listing 1). A class called BitConverter in the
System namespace of the .NET Framework
class library is dedicated to this task. It has a
GetBytes method, with overloads for mostsimple
types, which returns a byte array with the in-
memory representation of the value you pass in.
It also has a number of To 7ypeName methods
for doing the opposite—converting a byte array
to a primitive type:

bytel[] b = BitConverter.GetBytes(
Oxbab5eball);

//{0x11,0xba,0x5e,0xba}

uint u = BitConverter.ToUInt32(
new bytel] {Oxfe, Oxb5a, 0xl1,
0xfa},0); // Oxfallbafe

Animportant thing to keep in mind whenyou use
the BitConverter class is that its behavior depends
on the endianness of the hardware architecture the
code runs on—that is, the order in which the
bytes of an integer are stored in memory. Prob-
lems can arise if you persist the bits to a file format
that should be readable on many different plat-
forms. The BitConverter has a public IsLittle-
Endian field that you can check to determine how
it will behave, but unfortunately it doesn’t pro-
vide a way for you to change it.

It’s also possible to do without the BitCon-
verter class and do the work manually with some
bit shifting instead:

b = new byte[] {Oxfe,0x5a,0x11,0xfa}l;
u = (uint)(b[0] | b[1] << 8 |
b[2] << 16 | b[3] << 24);

VISUAL STUDIO MAGAZINE

by Mattias Sjogren and Juval Lowy

b[0] = (byte)(

b[1] = (byte)(u >> 8);
b[2] = (byte)(u >> 16);
b[3] = (byte)(u >> 24);

U

This way you can get around the endian prob-
lem, because you have full control over which
byte ends up where.

Finally—if you don’t mind using unsafe
code—you can do a direct memory copy by
casting a pointer to the bytearray to a pointer to
the integer type, then dereferencing it:

unsafe f{
fixed (byte* pb =b)
u = *((uint*)pb);

}

The exact result of this operation depends on the
hardware the code runs on, as it does with the
BitConverter.

If you're going to do a lot of this kind of
conversion—in a tight loop, say—and want
the best performance, I suggest you use one of
the last two methods. The BitConverter tends
to be somewhat slower, although the difference
isn’t big. —AM.S.

¢ Reference Assemblies
in Visual Studio

I've used Gacutil.exe to install my assembly in
the Global Assembly Cache (GAC), butit’s not
listed with the other assemblies when I try to
reference it from a project in VS.NET. What
else must I do to be able to reference it, without
using the Browse button?

A:

The list of assemblies that appears in Visual
Studio’s Add Reference dialog box isn’t re-
trieved from the GAC; that’s a common mis-

MARCH 2003 -+ www.visualstudiomagazine.com

y

C# Convert Between Integers and Byte Arrays

using System;
// Compile with /unsafe option

class Test
{
static void Main()
{
uint u

= Oxbabeball;
byte[] b =

new byte[] {0xfe, 0x5a, 0x11l, Oxfal;

Console.WriteLine("Using BitConverter,
IsLittleEndian=" +
BitConverter.IsLittleEndian);

byte[] b2 = BitConverter.GetBytes(Oxbabeball);

PrintByteArray(b2);

uint u2 = BitConverter.ToUInt32(b, 0);

Console.WriteLine("Ox{0:x}", u2);

Console.WriteLine("Using shift operators");
b2 = new bytel[4];

b2[0] (byte)(u);

b2[1] = (byte)(u >> 8);

b2[2] = (byte)(u >> 16);

b2[3] = (byte)(u >> 24);

PrintByteArray(b2);
u2 = (uint)(b[0] | b[1] << 8 | b[2] << 16 | b[3] <K
24);
Console.WriteLine("Ox{O0:x}", u2);
Console.WriteLine("Using pointers in unsafe code"
¥
unsafe {
b2 = new byte[4];
fixed (byte* pb2 = b2)
sECUINTE)ph2y” = u;
PrintByteArray(b2);
fixed (byte* pb =b)
u2 = *((uint*)pb);
Console.WriteLine("O0x{0:x}", u2);

J

static void PrintByteArray(byte[] ba)
{
foreach (byte b in ba)
Console.Write("Ox{0:x2} ", b);
Console.WriteLine();

}

Listing 1 You can convert an int to a byte array, and vice versa, in three ways: with the BitConverter class, with manual bit shifting, or by doing

a direct memory copy.

conception. If you look in the Path column, you’ll see that most
of the assemblies listed are found in the .NET Framework direc-
tory, % WINDIR%\Microsoft .NET\Framework\v1.x.yyyy (see
Figure 1).

The GAC is primarily a deployment feature. Even if you intend
to deploy the assembly as a shared component, it might not be
necessary to have itinstalled in the GAC during development. If you
choose to have it installed in the GAC, you should also keep a copy
in another directory to make it easy to reference.

You shouldn’t copy your own assemblies to the Framework
directory in order to include them. A better way is to put them in
a separate directory, then add a key to the Windows Registry to tell
VS.NET where to find them. In addition to the core Framework
assemblies, VS.NET also displays any assemblies it finds in directo-
ries listed under these Registry keys:

HKEY_CURRENT_USER\Software\Microsoft\.NETFramework\AssemblyFolders
HKEY_LOCAL_MACHINE\Software\Microsoft\.NETFramework\AssemblyFolders
HKEY_CURRENT_USER\Software\Microsoft\VisualStudio\7.0\AssemblyFolders
HKEY_LOCAL_MACHINE\Software\Microsoft\VisualStudio\7.0\AssemblyFolders

Add your own sub key to one of these, then set the (Default) value
to the directory path where your assembly is located (see Figure 2).
If you're using Visual Studio .NET 2003, change 7.0 to 7.1 in the
key names. The next time you start VS.NET, you should see your
assembly in the Add Reference dialog. —A/.S.

« Handle Windows Messages
I have a WinForms application that needs to interoperate with a
legacy Microsoft Foundation Class (MFC) application. The Win-
Formsapplication replaces another MFC application. The problem
is that the MFC application I still have broadcasts custom user

VISUAL STUDIO MAGAZINE + MARCH 2003 -

www.visualstudiomagazine.com

messages that I used to handle in my MFC code. How can I handle
Windows messages directly in WinForms?

A:

By default, WinForms abstracts away and encapsulates from the
developer the underlying message processing. The operating system
still sends messages to the application window. .NET intercepts
these messages and converts them to delegate-based event invoca-
tions. However, you can provide your own message-processing logic
and handle messages directly. You typically want to do that when
you deal with custom messages that would be discarded otherwise.
The base class of all WinForms controls and forms is the Control

ogram Files\Microsoft.N..

7.0.3300,0
1.0,5000.0
7.0,3300.0
1.0,5000.0
1.0.5000.0
1.0.5000.0
1,0.5000.0
1.0,5000.0
1,0,5000.0
1.0.5000.0

E:\WINDOWS\Microsaft.NET\, ..
E:\WINDOWS\Microsoft.NET, ..
E:\Program Files\Microsoft.N. .,
E:\WINDOWS|Microsoft, NE
E:\WINDOWS|Microsoft, NETY.
E:\WINDOWSMicrosaft . NETY,
E:\WINDOWS\Microsoft. i
E\WINDOWS\Microsoft.NET\...
EA\WINDOWS|Micrasoft.NETY,
E: 1WINDOW‘"I Mllfrn<nft, NFTH,

. | system.Configuration.Install.dll
| System.Data.dll
System,Data, OracleClient. dll
System, Design,dil

System,DirectoryServices,dll
System.dll
Svstem.Drawinn.Nesin.dll

Figure 1 Simplify Component Names. You can use the System.-
Reflection.AssemblyTitle attribute to give your assembly a more read-
able display name in the Component Name column in the Add Refer-
ence dialog box.

43

-

class. Control provides the virtual WndProc method:

protected virtual void WndProc(ref
Message m);

Every Control-derived class overrides WndProc. You can override
it in your forms to handle messages directly. You can use the Class
Wizard in C# to add the implementation for you. (You have to do
it manually in VB.NET.) Open the Class Wizard, then expand the
namespace containing your form and its Classes folder. Find your
form, expand its Classes and Interfaces folder, find the Form class,
then expand its Methods folder. The last method is WndProc.
Right-click on the method, select Add from the context menu, then
clickon Override. VS.NET generates a stubbed-out override imple-
mentation of WndProc in your class:

protected override void WndProc(ref
Message m)
{)

Almost without exception, you must call your base class in the
override implementation, before or after your message handling.
Nothing in the form will work otherwise, because WinForms won’t
be doing message processing. Add a call to the base class’s WndProc:

=10l

&’ Registry Editor
File Edit View Favorites Help

| Data
cilvsm

| Type
REG_SZ

£-Ea 7.1 2| | Name
@I AD7Metrics (28] (Default)
#-{_] AddIns
{23 AppCommandLine
. &3 AssemblyFolders

{22 Primary Interop Assemblies wd
A Akl aadDacl

{:JPU'
: : £
Kl I R | 2

' |
,fMy Computer\HKEY_LOCAL_MACHINE\SOFTWARE|Microsoft)VisualStudio)7. 11AssemblyFolders| 2

Figure 2 Add Your Own Key. Tell VS.NET where your assembly is
by adding a key to the Windows Registry. The key can have any name;
only its default value matters. Not all AssemblyFolders parent keys
mentioned in the text exist by default. If you can't find one, simply
create it.

base.WndProc(ref m);

Build and test your form. Everything should work the same, except
now you have your hook in place. For example, you can trace every
message to the output window:

protected override void WndProc(ref

protected override void WndProc(ref Message m)
Message m) {
210]0 . U O - ddlc e DI .

]

l Preg o ki

1-800-848-5523
hitp://summit.GuidedDesign.com

GUIDED

.NET Architecture Summit

March 3-5, Microsoft Campus

- Keynotes by Adam Denning (Director of Application Architecture)
and Mark Anders (Product Unit manager, .NET Framework)

44

DE 5 / G N Chris Kinsman Juval Lowy Fernando Guerrero Keith Pleas
VISUAL STUDIO MAGAZINE MARCH 2003 WWW. Vi Istudic Zzine.com

Trace.WriteLine(m.ToString());
base.WndProc(ref m);

The preceding code results in output similar to this:

msg=0x135 (WM_CTLCOLORBTN) hwnd=0x50500
wparam=0x1010054 Tparam=0x40488
result=0x0

msg=0x2b (WM_DRAWITEM) hwnd=0x50500
wparam=0x40488 l1param=0x12ec08 result=0x0
msg=0x135 (WM_CTLCOLORBTN) hwnd=0x50500
wparam=0x1010054 1param=0x40488
result=0x0

You can also handle custom messages. You can define custom
messages in Windows apps in two ways, and use them for cross-
application communication. Both ways are also available to your
.NET apps. The first is to define a message in a range greater than

WM_USER (0x400):

public class Util

{
public const int WM_USER = 0x400;

}

const int UM_MYMESSAGE = Util.WM_USER +
77;//0r some other arbitrary number

The problem with WM_USER is that the messages aren’t guaran-
teed to be unique; in the case of a broadcast, you might wreck other
applications that happen to use the same value for a custom message.

The second way is to use the RegisterWindowMessage Win32
API call to generate a unique message identified by a string, or return
the same value if somebody registered a message already with the
same string. You need to import the RegisterWindowMessage
definition into .NET:

public class Util
{

[D11Import("user32",EntryPoint=
"RegisterWindowMessage")]
public static extern int
RegisterWindowMessage(string
msgString);

You can even send messages from .NET to Windows (if you know
their Windows handles) by importing the SendMessage API call:

public class Util

{
[D1T1Import("user32",EntryPoint="Send
Message")]
public static extern int
SendMessage(int hwnd,int msg,int
wparam,int Tparam);

You can obrain the Windows handle associated with your form by

VISUAL STUDIO MAGAZINE + MARCH 2003 -

www.visualstudiomagazine.com

accessing the read-only Handle public property of your form class:
public IntPtr Handle {get;}

These imported APIs, properties, and hooks are powerful tools
when it comes to interacting with a legacy code base, both as message
sender and as message receiver.

The sample code demonstrates the use of these techniques at
both ends (download the code from the VSM Web site; see the Go
Online box for details). —/.L.

Mattias Sjogren lives in southern Sweden, where he tries tocombine
consulting work with university studies. He is a Microsoft MVP for
Visual Basic. Reach him at mattias@mvps.org or visit his Web site at
www.msjogren.net.

Juval Léwy is a software architect and the principal of IDesign, a
consulting and training company focused on .NET design and .NET
migration. Juval is a Microsoft regional director for the Silicon Valley.
His latest book is Programming .NET Components (O'Reilly & Asso-
ciates). Contact him at www.idesign.net.

Additional Resources

« System.BitConverter class: http://msdn.microsoft.com/
library/en-us/cpref/html/frirfsystembitconverterclasstapic.asp

* “INFO: How to Display an Assembly in the Add Reference
Dialog Box": http://support.microsoft.com/?kbid=306149

Amyuni
PDF CONVERTER

+Convert all your reports and documents

AMYUNI i I
Technologies ;ﬂ

new
Version 1.5 of Amyuni PDF Creator

For a quick start visit our Technical notes at:
http:/Awww.amyuni.com/en/support/technotes.html

Amyuni
PDF CREATOR

Edit and Print PDF*
omplex docume

www.amyuni.com

info: sales @ amyuni.com
Evaluation:www.amyuni.com
Americas
Toll Free: 1-866-926-9864
Support: (514) 868-9227

orms and

ure documents™*
the Web through
Europe
Sales: (+33) 1 30 6107 97
Support: (+33) 1 30 61 07 98

+ActiveX
into you
+Link dire

*Portable Document Format **Professional versions on

Other formats:
DHTML, RTF, TXT

Available versions

sSingle-user license
+Server license
*Royalty-free Developer license
*Unlimited Site licence
+O€M license

All trademarks are property of theif respactive owhers
2002 AMYUNI Technologies Al rights reserved

Amyuni
Client/Server PDF
printing solutions

+Web or application servers delivering

reports in PDF format
*Server used to archive or print documents
+Integration with .NET platform

45

